Nakai’s Conjecture for Varieties Smoothed by Normalization

نویسنده

  • WILLIAM N. TRAVES
چکیده

The notion of D-simplicity is used to give a short proof that varieties whose normalization is smooth satisfy Ishibashi’s extension of Nakai’s conjecture to arbitrary characteristic. This gives a new proof of Nakai’s conjecture for curves and Stanley-Reisner rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential operators on monomial rings

Rings of differential operators are notoriously difficult to compute. This paper computes the ring of differential operators on a Stanley-Reisner ring R. The D-module structure of R is determined. This yields a new proof that Nakai’s conjecture holds for Stanley-Reisner rings. An application to tight closure is described. @ 1999 Elsevier Science B.V. All rights reserved. AMS Clas.@cation: Prima...

متن کامل

Polarizations and Grothendieck’s Standard Conjectures

We prove that Grothendieck’s Hodge standard conjecture holds for abelian varieties in all characteristics if the Hodge conjecture holds for complex abelian varieties of CM-type, and that it holds for all smooth projective varieties if, in addition, the Tate conjecture holds for smooth projective varieties over finite fields.

متن کامل

Kuga-satake Varieties and the Hodge Conjecture

Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of Kuga-Satake varieties. The Hodge conjecture is discussed in section 2. An excellent survey of the Hodge conjecture for abelian varieties is [...

متن کامل

A new shape retrieval method using the Group delay of the Fourier descriptors

In this paper, we introduced a new way to analyze the shape using a new Fourier based descriptor, which is the smoothed derivative of the phase of the Fourier descriptors. It is extracted from the complex boundary of the shape, and is called the smoothed group delay (SGD). The usage of SGD on the Fourier phase descriptors, allows a compact representation of the shape boundaries which is robust ...

متن کامل

The Tate Conjecture for Certain Abelian Varieties over Finite Fields

In an earlier work, we showed that if the Hodge conjecture holds for all complex abelian varieties of CM-type, then the Tate conjecture holds for all abelian varieties over finite fields (Milne 1999b). In this article, we extract from the proof a statement (Theorem 1.1) that sometimes allows one to deduce the Tate conjecture for the powers of a single abelian variety A over a finite field from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999